Partial Fraction Exercise

- 1. Resolve the expression $\frac{x-2}{(x^2+1)(x-1)^2}$ into simplest partial fractions.
- 2. Let g(x) be a quadratic polynomial and a, b, c distinct constants.

If
$$\frac{g(x)}{(x-a)(x-b)(x-c)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$$
 where A, B, C are constants, express A in terms of a, b, c and g(a).

Hence or otherwise resolve $\frac{x^2}{(x-1)(x-2)(x-3)}$ into partial fractions.

3. Prove that, if a, b, c are unequal,

$$\frac{a^2}{bc(a-b)(a-c)} + \frac{b^2}{ca(b-c)(b-a)} + \frac{c^2}{ab(c-a)(c-b)} \equiv \frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab}$$

4. Find the coefficients of A, B, C, D so that the following equation may be true for all values of x,

$$\frac{1+x^2}{(x^2-4)(2x^2+5)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{Cx+D}{2x^2+5}$$

5. Establish the identity:
$$\frac{a^2(x-b)(x-c)}{(a-b)(a-c)} + \frac{b^2(x-c)(x-a)}{(b-c)(b-a)} + \frac{c^2(x-a)(x-b)}{(c-a)(c-b)} = x^2$$

6. Resolve into partial fractions:

(a)
$$\frac{2x^3 - 8x^2 + x + 6}{(x-3)^4}$$
 (b) $\frac{5x^2 - 4x + 16}{(x-3)(x^2 - x + 1)^2}$

7. By expressing $(x-a)^4$ as $(x+a-2a)^4$, or otherwise, express $\frac{(x-a)^4}{(x+a)^4}$ into partial fractions.

8. If
$$y = \frac{a-b}{(x-a)(x-b)}$$
, express y and y^2 in partial fractions.

9. Express as a sum of partial fractions:

(a)
$$\frac{3x^2 + 4x + 7}{x^2 - 3x + 2}$$
 (b) $\frac{1 + 3x}{(1 + 2x)(1 - x)^2}$ (c) $\frac{x^2}{1 - x^4}$

(d)
$$\frac{9}{(1-2x)(1+x)^2}$$
 (e) $\frac{5-7x}{2x^3-x^2-2x+1}$ (f) $\frac{x^3+7x^2+9x-14}{(x+3)(4-x^2)}$

(g)
$$\frac{x}{(1+x^2)(1+x)^2}$$

10. Express $\frac{1}{x(x+2)}$ in partial fractions. Hence find the sum of n terms of the series: $\frac{1}{1\times 3} + \frac{1}{2\times 4} + \frac{1}{3\times 5} + \dots$

11. Resolve $\frac{1}{x(x-2)(x-1)^{2n}}$ into partial fractions when n is a positive integer.

12. Express $\frac{2x+3}{x(x+1)(x+2)}$ into partial fractions.

13. Resolve
$$\frac{x}{(x+1)(x+2)(x+3)}$$
 into partial fractions. Hence find the sum of

 $\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)(n+3)}.$

14. Using partial fractions, find the sum of:

(a)
$$\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots + \frac{1}{n(n+1)(n+2)}$$

(b) $\frac{4}{2 \times 3 \times 4} + \frac{7}{3 \times 4 \times 5} + \frac{10}{4 \times 5 \times 6} + \dots + \frac{4n+1}{(n+1)(n+2)(n+3)}$

- 15. (a) Write down the formula for the sum of the coefficients in the expansion of $(1 + x)^m$, where m is a positive integer.
 - **(b)** Deduce $\frac{1}{1!(2n)!} + \frac{1}{2!(2n-1)!} + \frac{1}{3!(2n-2)!} + \dots + \frac{1}{n!(n+1)!} = \frac{2^{2n-1}-1}{(2n+1)!}$

16. Prove that
$$\frac{(x-1)(x-2)\cdots(x-n)}{(x+1)(x+2)\cdots(x+n)} = 1 + \sum_{r=1}^{n} \frac{(-1)^{n-r+1}(n+r)!}{(n-r)!r!(r-1)!(x+r)}$$
 and show that $\sum_{r=1}^{n} \frac{(-1)^{r+1}(n+r)!}{(r!)^{2}(n-r)!} = 1 - (-1)^{n-r+1}$

17. Express
$$\frac{1}{x(x+1)\cdots(x+n)}$$
 in partial fractions. Hence, show that $\sum_{r=0}^{n} \frac{a^r}{x(x+1)\cdots(x+r)} = \sum_{s=0}^{n} \frac{(-1)^s A_s}{n!(n-s)!(x+s)}$

where the A_s are polynomials of degree n in a with integral coefficients.

18. Prove that
$$\frac{x}{x^5-1}$$
 when expressed in partial fractions is $\frac{1}{5} \cdot \frac{1}{x-1} + \frac{2}{5} \cdot \frac{x \cos \frac{4\pi}{5} - 2 \cos \frac{2\pi}{5}}{x^2 - 2x \cos \frac{2\pi}{5} + 1} + \frac{2}{5} \cdot \frac{x \cos \frac{8\pi}{5} - 2 \cos \frac{4\pi}{5}}{x^2 - 2x \cos \frac{4\pi}{5} + 1}$

19. Express in partial fractions the function: $\frac{x^p}{(x+1)\cdots(x+n)}$ in the two cases (a) $1 \le p \le n-1$, (b) p = n.

Hence or otherwise prove that the expression
$$\frac{1^{p}}{1!(n-1)!} - \frac{2^{p}}{2!(n-2)!} + \dots + \frac{(-1)^{n-2}(n-1)^{p}}{(n-1)!1!} + \frac{(-1)^{n-1}n^{p}}{n!}$$

takes the value zero when p = 0, 1, 2, ..., n-1, and find its value when p = n.

20. Prove that if $(1 + x)^n = c_0 + c_1 x + \dots + c_n x^n$, then

 $\frac{c_0}{y} - \frac{c_1}{y+1} + \frac{c_2}{y+2} - \dots + (-1)^n \frac{c_n}{y+n} = \frac{n!}{y(y+1)(y+2)\dots(y+n)}$ where y is not zero or a negative integer.

21. Given that $f(x) = (x - a_1) (x - a_2) \dots (x - a_n)$ and a_1, a_2, \dots, a_n are unequal.

(a) Prove that
$$\frac{f'(x)}{f(x)} = \sum_{r=1}^{n} \frac{1}{x-a_{r}}$$
.
(b) Prove that $\frac{[f'(x)]^{2} - f(x)f''(x)}{[f(x)]^{2}} = \sum_{r=1}^{n} \frac{1}{(x-a_{r})^{2}}$.
(c) If $\phi(x)$ is a polynomial of degree < n, prove that $\frac{\phi(x)}{(x-a_{r})^{2}} = \sum_{r=1}^{n} \frac{\phi(x)}{r}$.

c) If $\phi(x)$ is a polynomial of degree < n, prove that $\frac{\phi(x)}{f(x)} = \sum_{r=1}^{n} \frac{\phi(a_r)}{f'(a_r)} \frac{1}{x - a_r}$.

If $f(x) = (x - a_r)g_r(x)$, show that the above result can also be put in the form $\frac{\phi(x)}{f(x)} = \sum_{r=1}^{n} \frac{\phi(a_r)}{g_r(a_r)} \frac{1}{x - a_r}$.

- 22. Given that $f(x) = (x a_0) (x a_1) \dots (x a_n)$, where a_0, a_1, \dots, a_n are all distinct, and $\phi(x)$ is a polynomial of degree not greater than n + 1, show that $\sum_{r=0}^{n} \frac{\phi(a_r)}{f'(a_r)}$ is the coefficient of x^n in $\phi(x)$.
- 23. Given that for all x, $\frac{ax^2 + bx + c}{(x \alpha)(x \beta)(x \gamma)} = \frac{A}{x \alpha} + \frac{B}{x \beta} + \frac{C}{x \gamma}$

find the condition that A + B + C = 0. Hence or otherwise, evaluate $\sum_{n=1}^{N} \frac{3n+1}{n(n+1)(n+2)}$.

24. (a) Find the values of A, B, C, D so that

$$\frac{3+x^2}{(1-x)^2(1+x^2)} = \frac{A}{1-x} + \frac{B}{(1-x)^2} + \frac{C+Dx}{1+x^2}$$
 becomes an identity.

(b) Prove that when
$$-1 < x < 1$$
, $\frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^4}{1-x^8} + \dots = \frac{x}{1-x}$

25. Resolve the expression $\frac{x^6 - x^2 + 1}{(x-1)^3}$ into partial fraction.

26. Determine the constant A in the identity: $\left(\frac{x}{y}+1\right)\left(\sqrt{2}-\frac{x}{y}\right)\left(\sqrt{2}-\frac{x+2y}{x+y}\right) \equiv A\left(\sqrt{2}-\frac{x}{y}\right)^2$.

Using this identity, prove:

(i) that the irrational number $\sqrt{2}$ lies between the positive rational number $\frac{m}{n}$ and $\frac{m+2n}{m+n}$.

(ii) that
$$\sqrt{2}$$
 is closer to $\frac{m+2n}{m+n}$ than to $\frac{m}{n}$

27. Let n be any positive integer, and a_r , b_r the coefficients of x^r in $(1 + x)^n$ and $(1 + x)^{n+2}$ respectively. Prove that: (a) $b_{r+2} = a_r + 2a_{r+1} + a_{r+2}$ if $0 \le r \le n-2$.

(a)
$$b_{r+2} - a_r + 2a_{r+1} + a_{r+2} = n \quad 0 \le 1 \le n$$

(b)
$$\frac{n!}{x(x+1)...(x+n)} = \sum_{r=0}^{n} \frac{(-1)^r a_r}{x+r}$$
,

(c)
$$\frac{a_0}{x(x+1)(x+2)} - \frac{a_1}{(x+1)(x+2)(x+3)} + \dots + \frac{(-1)^n a_n}{(x+n)(x+n+1)(x+n+2)} = \frac{(n+2)!}{2x(x+1)\dots(x+n+2)}$$

28. (a) Let A(x) be a polynomial of degree n in x, with real coefficients and n real roots $x_1, x_2, ..., x_n$.

Prove that
$$\sum_{i=1}^{n} \frac{1}{x - x_i} = \frac{A'(x)}{A(x)}$$
, where A'(x) is the derivative of A(x)

Hence or otherwise, prove that $\sum_{i=1}^{n} \frac{1}{(x-x_i)^2} = \frac{[A'(x)]^2 - A(x)A''(x)}{[A(x)]^2}$

- (**b**) Resolve $\frac{2x-1}{(x-1)^2}$ into partial fraction.
- (c) Let x_1, x_2, x_3, x_4 be roots of the polynomial $B(x) = x^4 - 10x^2 + 1$. (You may assume that all the roots of B(x) are real.)

Using (a) and (b) or otherwise, evaluate the sum: \sum

$$\sum_{i=1}^{4} \frac{2x_i - 1}{(x_i - 1)^2}.$$

(For Q.29 - 34, the concept of Binomial series is needed.)

29. Resolve $\frac{7-8x}{(1-x)(2-x)}$ into partial fractions. Hence find the expansion of the function in ascending powers of x. State for what range of values of x the expansion is valid and prove that, from the fourth terms onwards, the coefficients

are all negative.

30. Resolve into partial fractions $\frac{1+x}{(1+2x)^2(1-x)}$.

For what range of values of x can this function be expanded as a series in ascending powers of x?

Write down the coefficient of xⁿ in this expansion.

31. Resolve into partial fractions $\frac{2}{(1-2x)^2(1+4x^2)}$ and hence obtain the coefficients of x^{4n} and x^{4n+1} in the expansion of

this function in ascending powers of x.

State the range of values of x for which the expansion is valid.

32. Resolve into partial fractions $\frac{x^2+1}{(x-3)^2(x-2)}$ and hence obtain the coefficient of x^n in the expansion of this function in

ascending powers of x.

For what range of values of x for which the expansion is valid?

33. Resolve into partial fractions $\frac{2+x^2}{(2-x)^2(4+x)}$ and expand the function in a series of ascending powers of x. Find the

coefficient of xⁿ and state the range of values of x for which the expansion is valid.

34. Express $\frac{3x+4}{(x+1)(x+2)^2}$ in partial fractions. Hence obtain the expansion of the given expression in ascending powers

of x as far as the term in x^3 , stating the necessary restrictions on the value of x.