
Partial Fraction Exercise 

 

1. Resolve the expression ( )( )22 1x1x
2x
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  into simplest partial fractions. 

2. Let g(x) be a quadratic polynomial and a, b, c distinct constants. 
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 where A, B, C are constants, express  A  in terms of a, b, c and g(a).  

Hence or otherwise resolve 
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3. Prove that, if a, b, c are unequal, 
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4. Find the coefficients of A, B, C, D so that the following equation may be true for all values of x, 
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5. Establish the identity: 2
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6. Resolve into partial fractions: 
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7. By expressing  (x – a)4  as  (x + a – 2a)4 , or otherwise, express 
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9. Express as a sum of partial fractions: 
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11. Resolve 
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12. Express 
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13. Resolve 
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14. Using partial fractions, find the sum of: 
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15. (a) Write down the formula for the sum of the coefficients in the expansion of (1 + x)m, 

  where m is a positive integer. 
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16. Prove that 
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 where the As are polynomials of degree n in  a  with integral coefficients. 

18. Prove that 
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  when expressed in partial fractions is 
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19. Express in partial fractions the function:
)nx()1x(

x p

+⋅⋅⋅⋅+
 in the two cases  (a)  1 ≤ p ≤ n –1 ,  (b) p = n. 

 Hence or otherwise prove that the expression 
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 takes the value zero when  p = 0, 1, 2, …., n-1,  and find its value when  p = n. 

20. Prove that if  (1 + x)n = c0 + c1x + …. + cnxn, then 
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21. Given that  f (x) = (x – a1) (x – a2) …. (x – an)  and  a1, a2,…. , an are unequal. 
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 (c) If  φ(x)  is a polynomial of degree < n, prove that 
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22. Given that f(x) = (x – a0) (x – a1) …. (x – an),  where a0, a1, …., an are all distinct, and φ(x) is a polynomial of degree 

not greater than n + 1, show that 
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24. (a) Find the values of  A, B, C, D so that 
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 (b) Prove that when  -1 < x < 1, 
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25. Resolve the expression  
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26. Determine the constant A  in the identity: 
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  Using this identity, prove: 

(i) that the irrational number 2  lies between the positive rational number 
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27. Let n be any positive integer,  and  ar, br the coefficients of xr in (1 + x)n and (1 + x)n+2 respectively.  Prove that: 

 (a) br+2 = ar + 2ar+1 + ar+2  if  0 ≤ r ≤ n – 2. 
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28. (a) Let A(x) be a polynomial of degree n in x, with real coefficients and n real roots x1, x2, …, xn.  

  Prove that 
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 (c) Let  x1, x2, x3, x4  be roots of the polynomial 

  B(x) = x4 – 10x2 + 1.   (You may assume that all the roots of B(x) are real.) 

  Using (a) and (b) or otherwise, evaluate the sum: 
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(For Q.29 – 34, the concept of Binomial series is needed.) 

 

29. Resolve 
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State for what range of values of x the expansion is valid and prove that, from the fourth terms onwards, the coefficients 

are all negative.  

30. Resolve into partial fractions 
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 For what range of values of x can this function be expanded as a series in ascending powers of x? 

 Write down the coefficient of xn in this expansion. 

 

31. Resolve into partial fractions 
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this function in ascending powers of x. 

 State the range of values of x for which the expansion is valid. 

 

32. Resolve into partial fractions 
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ascending powers of x.  

 For what range of values of x for which the expansion is valid? 

 

33. Resolve into partial fractions 
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of x as far as the term in x3, stating the necessary restrictions on the value of x. 
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